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Field-Flow Fractionation: Extensions to Nonspherical
Particles and Wall Effects

LAWRENCE J. GAJDOS* and HOWARD BRENNERY*

DEPARTMENT OF CHEMICAL ENGINEERING
CARNEGIE-MELLON UNIVERSITY
PITTSBURGH, PENNSYLVANIA 15213

Abstract

A rigorous analysis of the phenomenon of field-flow fractionation (FFF) is
presented for particles which are both nonspherical in shape and of sufficient
size (compared with apparatus dimensions) to be significantly influenced by wall
effects. Calculations are presented for axially-symmetric particles in an arbitrary
flow field. Orienting torques directed along the symmetry axis of the particle
are also considered. The theory is compared with the experimental data of
Berg, Purcell, and Stewart. Reasonably satisfactory agreement is observed.

INTRODUCTION

This contribution is concerned with the combined diffusive and con-
vective transport of an isolated, arbitrarily shaped Brownian particle
immersed in a fluid flowing horizontally above a flat plate. It applies equally
well to dilute systems of noninteracting particles. In the presence of con-
servative external forces and torques normal to the flow direction (such
as arise from gravity), which simultaneously influence the particle’s posi-
tion and orientation, the average convective transport of the particle is
governed by its buoyant mass. In turn, this determines the gverage particle
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position in the potential field. This phenomenon can be used to effect a
separation between particles of different size, shape, or density. This
separation concept was developed independently by Berg and Purcell
(1-3) and by Giddings (4-6), who termed the method “field-flow frac-
tionation.” Here, the theoretical analysis is improved upon and extended
to include nonspherical particles in an orienting field.

Our approach, which considers the temporal evolution of the pro-
bability density describing both the position and orientation of a single
particle, has previously (7) been applied to analyze transport of Brownian
spheres in fluid-filled circular cylinders. However, in that situation,
particle transport is affected by the size of the particle (due to “exclusion
effects” and hydrodynamic interactions with the system boundaries).
Here, size is primarily of importance only insofar as it determines the
particle’s buoyant mass. This greatly simplifies the hydrodynamic analysis
of the particle’s behavior.

Berg and Purcell (/) employed an ingenious random-walk analysis to
(in effect) obtain the approximate time-evolution of the moments of the
particle distribution. Giddings (5) used somewhat different, but still heuris-
tic, concepts in his theoretical analysis (“nonequilibrium theory™), as is
pointed out by Subramian (8), who shows how the Gill and Subramian
dispersion theory (9) is more suitable for theoretical treatment of these
problems.

The analysis to be given here extends the range of problems for which
theoretical analysis of field-flow fractionation may be contemplated. Con-
siderations are given to the finite size of the particle in terms of the con-
sequences of the regions close to the system boundaries being inaccessible
to the particle. Also, by beginning with the six-space continuity equation,
it is possible to extend the applicability to nonspherical particles. Il-
lustrative examples are carried out for special subcases of the general
theory to indicate how it can be applied.

A more detailed summary of the developments to be presented now
foliows.

We begin by presenting the continuity equation governing the particle’s
six-space probability density. Boundary conditions are incorporated into
the continuity equation via a synthetic wall potential, which expresses the
fact that the particle surface is unable to penetrate physical barriers. The
particle is assumed to be introduced into the flowing fluid at zero time at
an arbitrary location and with an arbitrary orientation.

Particle size is assumed relatively small compared with the physical
dimensions of the apparatus. For times longer than the characteristic
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“diffusion time” of the particle, it is then shown that the particle loses all
memory of its initial orientation. Consequently, a condition of “orienta-
tional equilibrium” obtains instantaneously at each point, wherein the
particle’s rotary Brownian motion is equilibrated with the orienting effects
of the external couple. As a consequence, it becomes possible to average
the continuity equation over all orientations of the particle, leading to a
closed-form expression for the time-evolution of the marginal prob-
ability density of particle-locator position in physical space only. The
expression is identical to that describing convective diffusion phenomena
in an anisotropic medium.

For illustrative purposes, the physical problem is then specialized. The
particle is assumed to be a body of revolution, possessing both fore/aft
symmetry and an axisymmetric (but possibly inhomogeneous) distribution
of mass. The general theory, however, is not restricted to these assump-
tions. Further, the external force is assumed to arise from a constant
acceleration potential, such that any external torque due to the particle’s
mass inhomogeneity is constant too. Again, these restrictions lend con-
creteness but are not essential to the development of the theory. The
continuity equation is then simplified to a form specific to these assump-
tions.

Analysis of the problem is continued by deriving relationships for the
asymptotic, first, and second axial moments of particle position in the
direction of flow. For these long times, the particle loses all memory of
its initial position in the plane perpendicular to the flow. It is shown that
a “‘positional equilibrium”™ develops wherein translational diffusion is
balanced by the deterministic influences of the external field. The moments
are given in terms of the physical parameters of the problem as well-defined
integrals of the local undisturbed fluid velocity profile. These integrals
are weighted by an appropriate factor dependent on the strength of the
external field.

The transport moment integrals are then evaluated for an arbitrary,
power-series velocity profile. The integrals are reduced to finite sums
involving the incomplete gamma function. Numerical results are given for
two of the more common velocity profiles, namely flow between two
parallel flat plates (full parabola) and flow with an upper free surface
(half parabola). These results are parameterized by a dimensionless
grouping proportional to the strength of the external field.

Following this, the results for an appropriate limiting case are shown
to be comparable to those of Berg and Purcell (/). Our computations are
more accurate at extreme values of the field strength grouping. We then
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show how our results may be applied to nonspherical particles, taking
the dimers observed by Berg and Purcell as a prototype shape. Next, the
results are extended to incorporate first-order effects of particle size (for
spheres only) on the rate of particle transport. The modification appears
able to account for most of the observed deviation between theory and
experiment. Lastly, we indicate how the appropriate corrections can be
calculated for nonspherical particles.

PROBLEM DESCRIPTION

Consider a single Brownian particle inserted into an otherwise unidirec-
tional horizontal fluid motion taking place in the z direction. The fluid
extends to infinity in all horizontal directions being bounded vertically,
below and above, by planes y = 0 and y = h, respectively. With 2 a unit
vector in the direction of flow, the undisturbed fluid velocity field is as-
sumed to be of the form

V= 2Vy) (M
This automatically satisfies the continuity equation
V'V, =0 2

for any choice of V().

In addition to the hydrodynamic surface force exerted on the particle
by this fluid motion, an external body force is assumed to act upon the
particle in the vertical direction. This force may also give rise to a torque
on the particle, tending to align the latter in a particular orientation with
respect to the direction of the external force field. This would occur, for
example, if the particle’s mass were inhomogeneously distributed.

As a result of the diffusive, random Brownian forces superimposed on
the above, the net motion of the particle is a stochastic process whose
statistical properties may be described by the temporal evolution of the
probability density function describing the particle’s instantaneous
position.

The ““position” of an arbitrarily shaped, rigid particle of finite size is
described by six coordinates, three to fix the location of the particle in
space and three to describe its orientation. In this paper, the configuration-
space representation of Brenner and Condiff (/0) shall be used. Particle
location is given by the vector R from a point fixed in space to an arbitrary
“locator point™ rigidly attached to (but not necessarily lying within) the
particle. R will be given the Cartesian coordinates (x, y, z) delimiting the
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apparatus. Particle orientation is specified by the set of Euler angles (10,
11) ¢ which relate the orientation of axes fixed in the particle (body-fixed
axes) to a set of axes fixed in space.

The particle’s position (R, &) is a stochastic process with given initial con-
dition (R, ¢’) at time ¢t = 0. As is discussed later, for sufficiently long timzs
the statistics of this process become independent of this initial condition—
whence the particle loses all “memory” of its initial state. The probability
density function describing this motion will be denoted by o=
o(R, ¢, t | R, ¢'). That is, 6d°Rd>¢d is the probability that the particle’s
position at time ¢ lies in the six-space volume element d>Rd>¢ centered at
(R, ¢). By definition, the integral of this function over the entire domain
must be unity:*

jjad3Rd3¢ =1 (for all 1) 3)

Conservation and continuity of probability density require that o
satisfy the continuity equation (7, 10, 12-15)

do | 0 2
§+aiﬂ+%”J=wwm—R%@—¢) (fort=0) (4)

c=20 (fort < 0) &)

In the above, ¢ is the Dirac delta function, defined for vector arguments
such that it is normalized when integrated over the appropriate vector
space:

Pm—me=1 (6)

ja((b _ )P = 1 ™

J0/0R and 0/0¢ represent gradient operators in physical and orientation
space, respectively, while the quantities ‘J and "J, respectively, are the
vector fluxes of probability due to translation and rotation of the particle.
These quantities, which contain contributions arising from all three
sources of particle motion (fluid convection, external forces and torques,
and Brownian motion) can be related to the density function ¢ (0).

The motion of the particle is constrained such that every point in the

*The notation [--- indicates integration over the entire domain of either physical
space, R, or orientation space, ®.
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particle necessarily lies between y = 0 and y = 4 at all times. Taking ac-
count of the finite size of the nonspherical particle is mathematically
nontrivial as regards the impenetrability of the wall to the particle. In
general, for a given set of locations R, only certain orientations ¢ of the
particle will meet this restriction. The description of the boundary con-
dition will also depend on the particular choice made for the locator
point.* Gajdos (/6) discusses a technique for incorporating this boundary
condition directly into the continuity equation, by recognizing that
penetration of the boundaries by the particle is prevented by very short-
range, intermolecular, repulsive forces. These forces may be most simply
modeled by assuming that they give rise to a potential which is everywhere
zero, except when particle-boundary penetration occurs, in which event
the potential assumes a value of infinity. Such a potential could still be a
complicated switching-type function of location and orientation. Never-
theless, it eliminates and/or postpones many conceptual problems as-
sociated with the boundary condition.

When size effects are irrelevant, as will be true here, the wall potential
“switching function™ takes an especially simple form, independent of
orientation. If we specify that the particle-locator point be “somewhere
near” the particle—for example, within it or not too far from some point
on its surface—we may take as the wall potential E,,, a function which is
infinite whenever the vertical y coordinate of the particle’s location vector
R lies outside the vertical boundaries of the system:

0, O<y<h
E, =
0, y<0;y2h

®)

This ignores any considerations of the finite size of the particle. Simply
stated, the difference between the true cutoff values, which vary with par-
ticle orientation, and those used above (0 and A) is much smaller than the
distance scale of interest. Hence, to a certain order of approximation
(consistent with other assumptions to be invoked), Eq. (8) allows a valid
representation of the boundary condition.

Thus, if the other forces and torques on the particle can also be expressed

*For example, if the particle is a sphere, any choice of locator point other than the
sphere center implies that the boundary condition must involve a complicated inter-
connection between location and orientation. For other particle shapes, no locator
point proves to eliminate this interdependence—although some choices may prove
better than others.
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as a potential, the net force F and torque T on the particle are given by
F/kT = —0E/0R ®
T/kT = —8F[od (10)

with k& the Boltzmann constant and T the absolute temperature. This
definition of the net potential* E, which incorporates the mean thermal
particle energy k7, renders it dimensionless. The potential arises from
both the physical origins previously discussed as well as from the synthetic
considerations of the boundary condition.

Equations (4) and (5) describe the evolution of the probability den-
sity function of the stochastic process (R, ¢) from its initial value
R, $, 0| R, ¢) = 6(R — RN6(d — ¢’). This evolution is governed by
the convective velocity field, Eq. (1), the potential field E, Egs. (9) and (10),
and the random Brownian motion of the particle. These influences are
linked into Eq. (4) via the vector probability fluxes ‘J and 'J according to
known constitutive relationships (10).

ORIENTATIONAL EQUILIBRIUM

The assumption of orientational equilibrium constitutes a major
simplification of the problem. Here, the particle orientation is determined
solely by a balance between the deterministic, orienting effects of the
external field and the stochastic effects of rotary Brownian movement.
The orienting effect of fluid shear is assumed to be negligible.

Brenner and Condiff (J0) have derived criteria prescribing conditions
for the validity of this assumption. First, times must be longer than the
diffusion time," 7, characteristic of the particle. In such circumstances
the particle will have lost all memory of its initial orientation. Second, the
particle must be small compared with apparatus size. With a a charac-

*If the wall potential is a true step function, care must be taken in applying Egs. (8)
and (9). Physically, of course, the potential becomes infinite over a finite distance,
rather than abruptly; it is only because of the scale of distance that will be treated
that we make the step function approximation. For example, the potential only resem-
bles a step function due to the scaling that will ultimately be of concern to us.

tFor a spherical particle of radius a immersed in a fluid of viscosity u, tp ~ 8nua®/
kT = 1/D,, where D, is the rotary diffusion coefficient. In the two systems studied
by Berg and Purcell, 75 ~ 0.6 sec and 1p =~ 0.8 x 10~ % sec in the studies dealing with
~1 um latex spheres (2) and E. coli bacteriophage (3), respectively. Since the total times
for their experiments ran into hours, the condition 7 3> tj is certainly true in their work,
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teristic particie size, this condition may be stated as

def

A = afh {1y
where

IR (12)

By suitably scaling Eq. (4) and by expanding ¢ in a perturbation series
in the parameter A, Brenner and Condiff (/0) have determined that
orientational equilibrium represents a zeroth order (in A) solution of the
continuity equation. That is, they found that

c=ye £+ 00 (fort>» 1p) (13)

where iy = Y(R, ¢ | R’) is an arbitrary function, independent of orientation.
The utility of expressing the “no penetration” boundary condition as
part of the potential is immediately apparent from Eq. (13). Equation (3)
guarantees that (R, ¢ | R’) be finite for all times greater than zero. Thus,
Eq. (13), the mathematical statement of orientation equilibrium, implies
that o be zero whenever E is infinite. Thus the boundary condition has most
simply been incorporated into the partial solution of Eq. (4).

Substitution of Eq. (13) into the continuity Eq. (4), and integration over
all orientations, yields

) d -
a—tlpe‘E + 0(4) + 353 = 6(N6R - R (14)

where the integrated potential E is defined by

def

e F= ~[e"””d%i) (15)

J is the orientation-averaged translational flux vector,

def

j= jrmp (16)

The orientation-averaged divergence of the rotary flux is identically zero,
as a consequence (5) of ¢ being a closed space and of the single-valuedness
of '¥:

a r 3 —
ja(b-qu)_o an



14: 07 25 January 2011

Downl oaded At:

FIELD-FLOW FRACTIONATION 223

The constitutive relation for the translational flux vector is (10)

0
J =0V — e”*‘(’D-ﬁ + CDT-a%> ek (18)
Here,* 'D and °D are, respectively, the translational and coupling dif-
fusion dyadics, and V is the purely hydrodynamic convective velocity of
the particle locator point in the absence of Brownian movement and
external forces. In general, each are functions of particle and boundary
sizes and shapes, fluid properties, and of particle location and orientation
relative to the boundaries. However, to zeroth order (in 1), these diffusivity
dyadics are “almost everywhere”** those which obtain in the absence of
boundaries. Moreover, the translational convective velocity is identical
to the value of the undisturbed fluid velocity at the locator point,

V=V, + 0() (19)

In applying Egs. (13) and (18) to Eq. (16) for the orientation-averaged
translational flux, explicit recognition must be given to the fact that the
last term of Eq. (18), involving the coupling dyadic, is of higher order than
the other terms. Thus, although Eq. (13) seems to imply the vanishing of
this term when proper scaling is applied, the order 1 term in the perturba-
tion expansion (13) for ¢ must be included (for this last term only). Thus,
omitting details (/0),

F
J=ye by, - (kT/u)<j’K“e'Ed3¢>-b—% (20)

wherein the inverse of the translational resistance dyadic, ‘K, appears,
rather than the translational diffusion dyadic, ‘D, related by the generalized
Stokes-Einstein relation,

T/’ K™ ! =*D — DI "D 1D @D

with "D the rotatary diffusion dyadic. In the absence of boundaries, the
coupling dyadic is identically zero for centrally-symmetric particles when

*Note that “t*” indicates transposition, ¢.g., (ab)t = ba,

**Gajdos (/6) has treated the mathematical formalities of this assertion. It is always
true that a region exists near the boundary—say, within 10 particle lengths of the
boundary—where hydrodynamic interaction occurs between the particle and the
boundary. However, for very small particles (in Berg and Purcell’s experiments, 4 ~
0.0001), this region is such a small portion of the total domain of the particles that
phenomena occurring in the boundary region can be neglected.
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the locator point lies at the body’s “center of reaction’ (14). Under these
conditions, which obtain in the following, the distinction is of no con-
sequence.

Equations (14) and (20) show that the vertical domain, y, of R is limited
by the wall potential defined in Eq. (8). Outside of the region 0 < y < h,
the coefficients of each term in Eqs. (14) and (20) vanish. With this in mind,
define the marginal probability density, ¢ = ¢(R, ¢ | R’),

c= J.ad3¢ =ye B+ 00) (>»1p (22)

The latter equality follows from Eqgs. (13) and (15). Since ¢ is a probability
density,

jcd’R =1 (for all ¢) 23)

which also follows independently from Eq. (3). Thus, utilizing Egs. (20),
(22), and (2), the orientation-averaged continuity Eq. (14) becomes, for
t > 1),

-g;+ V Ve - Vee FDVeef = 8(1)0(R — R) + O(4)
O<y<h (24)
c=0 (y<O;y>h 25

The average diffusivity D has been defined as

D = RT/CKS (26)

Moreover, V has replaced the physical space gradient operator,

def

V = §/6R @7
The orientation-averaging operator is given by
def
Gy 2 fee ] [er @)

Note that Eq. (25) follows from Eqs. (8), (15), and (22).*
Equations (24) and (25) represent the final result of carrying through,

*In addition to (25), observe from (26) an~d (28) that the product e~ED must vanish
at y = 0 and y = h, whereas the product e®c is everywhere equal to v (Eq. 22). This
consideration implies that the flux e~£D+Vcef must also vanish at y = 0 and y=h.
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to zeroth order in A, the consequences of orientational equilibrium. The
residue is a conventional physical-space convective-diffusion equation.
Under the dual assumptions of ¢ » 1, and A — 0, this equation applies
to particies of arbitrary shape in the presence of orienting external fields.

SPECIALIZATION OF PROBLEM

The preceding results will now be specialized to axisymmetric, centrally-
symmetric particles. Further, the external field will be assumed to arise
solely from a gravitational force acting downward on the particle. The
latter is allowed to possess a nonuniform, but axisymmetric, mass dis-
tribution, such that if the centers of mass and of buoyancy are distinct,
they both lie along the axis of symmetry. Failure of these centers to
coincide results in the existence of a permanent, embedded dipole—
creating a gravitational torque tending to align the particle’s symmetry
axis in the vertical direction, with the heavier end of the particle pointing
vertically downward.

Brenner and Condiff (10) have derived the general form of the potential
resulting from such circumstances. Their result may be expressed as

E = ylhs + xe'9 (29)

In the above
def

hy = kT|myg (30)

is the “scale height™ (1), and

def
X = mgr,/kT (3D

the Langevin parameter, with m, and m,, respectively, the buoyant and
actual particle masses, g the acceleration of gravity, and r,,, the distance
between the centers of mass and buoyancy. The assumed geometric sym-
metry of the particle is such that (I7)

‘D=0 (32)
D = ee'D” -+ (U - ee)‘D_L (33)

with the locator point chosen to lie at its centroid, which is also its center
of reaction. The unit vector e along the particle’s symmetry axis is a
function of orientation, i.e., ¢ = e(dp). U is the idemfactor, while 'D
and ‘D, are intrinsic scalars depending only on the size and shape of the
particle, representing, respectively, the translational particle diffusivities
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in directions parallel and perpendicular to the symmetry axis. Equations
(32), (33), (21), and (26) thus give

D = U'D, + (ee)('D;, — 'D)) (34)

Given the potential (29), the orientation average (27) of the dyad ee is
(10)

Cee) = 99 + (U = 399)x ™ "L(x) (35
with L(y) the Langevin function
L(y) = —x ! + ctnh g (36)
Hence
D= U - 99D + pyp (37)
where the scalars D and D’ are defined by
D="'D + X_IL(X)(tDu - D)) (38)
D' ='Dy — 2x"'L(('Dy — 'D)) (39)

Introduction of (29) and (37) into the orientation-averaged continuity
Eq. (24) yields

% + Vf(y)gg - D(Z_:% + 2—;c—> - D’%[e‘”"’%(ce”"’)]
= 8()0(x — x"Vo(y — ¥)8(z — 2') + O(L) (40)
The comments in the footnote on page 224 lead to the boundary conditions
d(ce*™)joy = 0, at y=0,h 41)

Two further simplifications are now easily made. The form of (40)
shows the initial z-coordinate of the particle to be inconsequential, whence
z' may be arbitrarily chosen. The obvious choice is

Z =0 42)

In addition, no interest attaches to particle transport in the x-direction,
across the width of the apparatus. This leads to the introduction of
marginal density, f, of ¢, defined by

-

def oo
f=10,z1)) =j cdx 43)

Hence integration of (40) and (41) over the range — o < X < o0 gives,
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with the use of (42),

) ) o* 0 0
3{ + Vf()’)a—jzj - Dg% - D'@[e_”h’a—y(fey"")]
= d(t)o(y — ¥)o(2) + O(h) (44)
afe™) oy =0, at y=0,h (45)

since the probability flux, dc/dx, must vanish at x = + 0.

PARTICLE TRANSPORT MOMENTS

Our main concern is with particle transport in the z direction. Moment
techniques of the Taylor, Aris, and Gill and Subramian genre (9, 18-20)
can therefore be applied to extract the macroscopic manifestations of
such transport without necessity for a complete solution of the pertinent
differential equation governing the probability density. Specifically,
knowledge of the time variation of the first and second axial moments (of
the horizontal position z of the particle) will prove sufficient.

To this end, define the moment generation functions, p,(y, t | y'):

—®w

def foo
u, = j Z"fdz (forn = 0) (46)

In terms of these, the desired moments are given by

h

my = myt) = 7 = j mdy  (n>0) @)
1]

The differential equations and boundary conditions governing the u,
can be obtained by multiplying (44) and (45) by z", and integrating over
the domain of z, to obtain

O o Ly = nV o + nln = DDityo + {Z(t)a((yn >y0; ¢=9
(48)
and
o e*™yoy =0, at y =0, h(foralln) (49)

where the operator L is defined by

i) 0
= D—] e ¥hs __ y/hs
Ly=D ay[e ay(l,ze )] (50)
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Integration of (48) over the domain of y, and application of (49}, yields,
according to (47),
() (=0

=nVsty_y + n(n — DDm,_, + {0 (n > 0) (51)

dm,

dt

The overbar denotes integration over the entire domain of y:

h
(...)=L(...)dy (52)
Equations (51) and (48) offer a recursive procedure for obtaining mo-
ments of any order. In the applications to follow, only the moments of
orders n = 0, 1, and 2 are required.
With n = 0, Eq. (51) yields

my = 1 (53)

This is merely a restatement of (3). The form of m, suggests that pu, pos-
sesses an asymptotic solution of the form

to = ae ¥ 4 exp (54)

where “exp” denotes terms that are exponentially small for large times z.
Appendix A quantifies the criterion for “long times.” It is readily verified
that Eq. (54) satisfies (48) and (49) for an arbitrary constant a. The value
of a is determined by noting that i, = m, (see Egs. 47 and 52), so that

o = e e 4 exp (55)
With n = 1, Eq. (51) leads to
%l- = m + exp (56)
Hence, employing (55), and neglecting exponentially small terms, yields
m, = fi, = Ut (57)
where w
U = Ve ek (58)
The form of (57) suggests a trial solution for u; of the form
py = (e7""fe™ )Tt + b) + exp (59)

The latter is consistent with (57) for b any function of y, satisfying
e ?Mpb(y) = 0 60)
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Substitution of (59) and (55) into (48) provides the necessary differential
equation satisfied by b:

d db 1 —
—_ =y/he _~ - ~y/hs —_—
dy(e dy) e -V 61
Furthermore, from (49),
db
=0 st y=0h (62)
A first integral of (61) is
db ey
— —y'(hs — ¢
=D Le (U=Vpdy (63)

It is unnecessary to obtain b itself in order to calculate the moments.
Rather, the above equations suffice.

Continuing to the last step of the procedure, Eq. (51) requires that the
second moment be given by the solution of the equation,

dm —_—
7173 =2V,u + 2D (64)
By using Eq. (59), the term involving , can be written as
Vo, = U + Ife™ (65)
with I defined as
h
I= j‘ b(y)V e~ dy (66)
0

The following manipulations obviate the need for an explicit expression
for b(y) for use in (66). Multiply (61) by b(y) and integrate from y = 0 to
»y = h. Next, integrate the resulting left-hand side by parts and use (62).
Also recognize that the first term on the right-hand side integrates to zero
because of (60). The remaining terms can then be rearranged to give an
expression for I that is easier to evaluate, namely.

h 2
I= D'j e"”"'(j—i) dy (67)

0
This result substantiates the claim that b(y) itself need not be obtained.

Equation (67) can be simplified greatly. First, substitute in (63) and
integrate the result by parts. One obtains, using the definition (58) of U,

2, [* S
= ~F,’L(U -V Le"”"’(U — Vpdy dy (68)
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where Vi = V,()'). Lastly, as a result of (62) and (63), it is easy to show*
that an equivalent expression is

2115 ’ =ylhs (77 g ’ '
1=F 0e U -Vvpy O(U - Veydy' dy (69)

Hence, integration of (64) gives
my = (Ut)?* + 2t(D + Ije™ ") (70)
Consequently, the standard deviation, or second central moment, is

(z— 2% =my —m

h y
2w p+Ze [ em@- v @-vparw| o

Equations (57) and (71), which constitute the desired relationships,
express the average rate of travel of the particle through the system and the
deviation about this rate. Given the physical constants for the system
(h, x, h, 'D,, 'Dy), and a specific velocity profile ¥(y), one can calculate
Z and (z — Z)? using (57) and (71) in conjunction with the defining rela-
tionships (38), (39), (36), and (58).

The principal results may be cast in dimensionless form. To this end,
define

& = ylh, (72)
The upper limit on &, corresponding to 4, is then given by

B = hih, (73)
or

p = mygh/kT (74)

such that 8 can be thought of as the “relative field strength” characterizing
the experiment.

In these terms, the average particle velocity U, defined by Eq. (58), can
be written as

U= jﬂ Ve s dé/ re*édg (5)
0 0

*Equations (62) and (63) show that the inner integral of (68) is zero when its upper
limit, y, is equal to 4. Hence, after reversing the sign of the expression, the inner integral
may also be expressed as the integral from y’ = y to y* = h. Equation (69) then follows
by reversing the order of the two integrations and switching dummy indices, y and y'.
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Morevoer, in place of (71), the “spread” of particle positions may be
written as

(z — 2)* = 2[D + k(h*VZD)t (76)

where V,, is the mean fluid velocity,
h

Vi = (118) L V(5 dy )

The dispersion parameter,
/] ¢ 8
k, = (2/[&2).[ e”fAvj Av' d&’ dé/g e S de (78)
0 0 0

is a dimensionless function of both the relative field strength § and the fluid
velocity profile. Here,

Av = (T = VIV, (79)

is the normalized velocity deviation function.

EVALUATION OF THE TRANSPORT MOMENTS FOR
AN ARBITRARY POWER-SERIES VELOCITY PROFILE

It is especially easy to evaluate the transport moment integrals, (75)
and (78), when the fluid velocity is expressed as a power series in the vertical
distance variable £, Thus, let ¥, be given by

N
Ve=Vu ;0 at’ (80)

For example, the parabolic profile for pressure-driven flow between two
flat plates is given by

Vi =6V, (y/h)(1 ~ y/h) 8D

so that, corresponding to (80), N = 2,a, = 0,a, = 6/8, and a, = —6/B>.
Substitution of (80) into (75) yields

N
U=V, :2‘0 ay(n + 1, B)/¥(1, B) (82)

where y(n + 1, f8) is the incomplete gamma function (21),

yn + 1, B) = r gre~t dg (83)
V]
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such that
WLB)y=1—¢7* (84)

From Eqgs. (82) and (79), the velocity deviation function is thus

N
Av = — Y a¢ (85)
n=0
with coefficients
ay=a, (n>0) (86)
N
ay = ag — UV, = — Zl aqy(m + 1, B)iy(1, B) (87)

Substitution of (85) into expression (78) for the dispersion parameter k,,
permits the double integration to be performed readily, due to (83). After
collecting like terms, there results

2N+1
k, = k; Ak + 1, Biv(l, B) (88)

with constants A4, defined by
k
A = 2/ Z} aj_ 18- ilJ (39)
=

Computations were performed with a digital computer to obtain values
of U/V,, and k, over a wide range of field strengths. Two velocity profiles
were used: the parabolic field of Eq. (81), and the half parabola resulting
when the upper plate is replaced by a free surface, namely

Ve =3V, [(y/h) ~ 1/2(y/h)’] (90)

The results of these calculations appear in Table 1. Note that the weak
field limit results (8 = 0) required further development, as discussed in
Appendix B.

Table 1 also lists the parameters y/h and f/2, the average particle height
and the Berg-Purcell (/) “width-factor,” respectively. The latter parameter
is related to the transport parameters utilized herein by the expression

112 = JkDID)(U|V,)F/h) o1

The average particle height parameter may be derived as follows. By
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TABLE 1
Variation of Transport Parameters with Relative Field Strength
Full parabola (81) Half-parabola (90)
B $Ih OfVa k7' f2 U1V koot 2
0.0° 0.5 1.0 210 0138... 10O 52.5 0.276 . ..
0.1 0.492 - — — 0.988 51.9 0.286
0.2 0.484 0.999 209 0.143 0.975 51.6 0.295
0.5 0.459 0.996 204 0.153 0.937 50.9 0.326
1.0 0.418 0.984 190 0.176 0.873 514 0.382
20 0.344 0.939 159 0.246 0.750 584 0.508
2.5 0.311 0.909 149 0.290 0.693 65.2 0.575
3 0.263 0.853 143 0.373 0.608 82.7 0.688
4.0 0.231 0.806 146 0.444 — — —
5.0 0.193 0.736 163 0.550 0.474 151 0.889
63 0.149 0.632 223 0.712 — — —
10.0 0.100 0.480 495 0.936 0.270 984 1.182
20.0 0.050 0.270 3901 1.186 0.142 11,670 1.304

@ See Appendix B for derivation of weak field limits. These results (at § = 0) are exact.

* Assuming D = D’ (the case for spheres, or when there is no external torque, such
that the Langevin parameter, xy = 0). If this is not the case, the quantity tabulated
is actually (fj2)+/ D'/ D.

definition, from the marginal density of Eq. (43), we have*

) h
jy= j L Wy, 2, tly)dydz 92)

—

This may be expressed alternatively in terms of the moment generating
function uy(y, t | '), defined by Eq. (46):

h
7= [} o ey ©3)
Thus, from (55) and the definition (52) of the overbar operator,

B 5
j = j ye ~Yhs dy/j e ' dy + exp (94)
4] 0

*Note that the symbol f is employed for both the width-factor and the marginal
density. No confusion should result, however, since the former always appears in the
form f2.
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or, neglecting transients, and utilizing (72) and (73),

8 /]
sth = || ceveaz[p[ e ©9)
0 0
Equivalently, in terms of the incomplete gamma function,
yih =32, B)/B1, B) (96)

For both cases tabulated in Table 1, the dispersion parameter k, exhibits
a maximum at some intermediate value of the field strength. This effect
is most pronounced in the case of the full parabolic velocity profile.
Presumably, this behavior may be interpreted by realizing that the dis-
persion will not decrease until it is less probable that the particle is in the
general vicinity of the maximum fluid velocity. Thus, if the fluid velocity
is a maximum at the upper boundary (the half-parabola case), the dis-
persion increases at relatively low field strengths, whereas in the full-
parabola case the average particle height must move below the center
(h/2) of the apparatus.

DISCUSSION

The results derived here are directly comparable to the theoretical results
of Berg and Purcell (). They are in substantial agreement—differing
slightly only in the values of the width-factor (91) at high and low field
strengths. Numerical values derived here are believed to be the more
accurate of the two. Berg and Purcell’s computational procedure, although
ingenious, was based on a random-walk analysis using a finite grid spacing.
To obtain the width-factor, it was necessary for them to truncate a com-
plicated infinite summation of transition probabilities, dependent on these
grid points. Based on their qualitative discussion of this procedure, it does
not seem unreasonable to assume that their results are only accurate to,
say, 5%. This conclusion is further supported by the failure of their cal-
culated width-factors (for the full and half parabolas) to approach the
weak field limit (Appendix B). In this limit, Table 1 indicates that the
width-factor for the half-parabola should become exactly twice that for
the full-parabola. Berg and Purcell’s results do not quite meet this cri-
terion, although their error is small.

In the middle range of field strengths, agreement between the width-
factors calculated here and those obtained by Berg and Purcell is excellent.
However, at high field strengths, the two methods once again give slightly
different results, Berg and Purcell’s being lower by about 5%.
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In their experiments with latex spheres, Berg et al. (2) discovered that
a significant portion of the spheres had stuck together, forming “dimers”
and “trimers.” The theory presented here is capable of describing the
transport of any body of revolution possessing fore-aft symmetry. Thus
it can be applied to a dimer and also to a trimer, if the latter is configured
as a straight chain,

Our theory shows that, for small particles, the transport rate is in-
dependent of shape. However, the spread (76) about this mean rate is
seen to depend on the two orientation-averaged diffusivities, D and D’.
These scalars, representing the orientation-averaged diffusivities in the
direction of the flow and the direction of the field, respectively, are
determined from the body’s intrinsic diffusivities, ‘D, and ‘D), as functions
of the Langevin parameter y, via Eqs. (31, (38), (39), and (36). This
parameter measures the strength of the dipole interaction with the ac-
celeration field. For example, if the dipole interaction is zero, then (10)

L =13 (=0 7
so that

D =D =(1/3)'Dy + (2/3)'D, = (1/3)U:'D (98)

that is, the orientation-averaged diffusivity is isotropic in the absence of
an external couple, the scalar diffusivity being equal to the arithmetic
average of the translational diffusivities along the principal axes of the
particle. These scalars can be obtained from the translational resistance
of the particle via the Stokes-Einstein relationship (21). Hence, with use
of (32) and (33), there obtains

tD|| = (kT/H)tK[l (99)
‘D, = (kT/w'K[" (100)

The translational resistance scalars, for motion parallel to and perendicular
to the axis of revolution, have been denoted ‘K|, 'K, respectively.

Goldman et al. (22) show, for two touching, nonrotating spheres, each
of radius a, that the resistance coefficient of each sphere is reduced from
its Stokes law value of 6ma by a factor of either 0.645 or 0.725 according
as the spheres are moving parallel or perpendicular, respectively, to their
line of centers. The translational resistances of the two-sphere particle are
thus given by

‘K, = 1.29(6na) (101)
'K, = 1.45(6na) (102)
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Hence, from (99) and (100),

‘D, = 0.775Dy (103)

‘Dy = 0.690D, (104)
where

D, = kT/6rya (105)

is the diffusivity of the single sphere.
Finally, via Eq. (98), the orientation-averaged diffusivities become

D =D =0718D, (106)

in the absence of an external couple. Had the diffusivity been calculated
on the basis of a single sphere possessing the same volume as the dimer,
the resuit would have been

D =D =0.794D,

Equation (106) enables the spread in transport times to be calculated for
the dimers via (76). Given the appropriate resistance coefficients, 'K,
and 'K, for three colinear, touching spheres, analogous results could be
obtained for the trimers. Unfortunately, the data of Berg et al. (2) are
insufficient to confirm these shape-dependent results.

Our last comment pertaining to the work of Berg et al. (2) concerns their
speculations on the effect of finite particle size. They found that their
experimental values of U were higher than the predicted values; further,
the deviation increased monotonically with particle size. From our work
(7) with finite-sized spheres in cylindrical tubes, it is seen that (to first
order in particle size) the effect of size on average transport velocity is
effectively to reduce the domain of y to that region truly occupied by the
sphere center, namely,

a<y<sh-a (107)

This is so because the particle/fluid slip velocity is “‘almost everywhere”
(see the last footnote on page 223) of a still smaller order, whereupon
hydrodynamic considerations may be neglected. Thus, in place of (75), we
may write

U= .V Ve df/ .rme-é de (108)

with
¢ = alh, (109)
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The power-series velocity profile (80) then gives,

N
UV, = goan[v(n + LB -8 -+ 1,8/ 8- ¢ -y e)] (110)

However, for small values of ¢ there obtains,
Wnt+ 1L, B — ) =y(n+ 1,0 - efe™® + O(?) (1
Yo+ 1,6) = & (n + 1) + O@E") (112)

The former derives from a Taylor series expansion of (83) about 8, while
the latter is derived by expanding the exponential in (83) and integrating
the result term-by-term.

A bit of algebra now yields the corrected expression for U in terms of
its value calculated by assuming ¢ = 0. In the case of the full-parabola (81),

Ucorr/Ue=0 = | + ¢ctnh (ﬁ/z) (113)

If h > h, asis the case in the Berg et al. (2) experiments with latex spheres,
this simplifies to

Uie/Usco = 1 + ¢ B> (114)

Table 2 compares the predicted deviation with that observed by Berg
et al. Results for the smaller size particles are clearly inconclusive. Within
experimental error, no deviation exists. For the larger size particles, the
present theory cannot account for all of the observed deviation. It is
unlikely that higher order terms would improve this situation. For
example, the next term in the formula (114) is negative, and of order &2,
[The sign will be negative since this term primarily accounts for the
particle speed being slightly less than that of the fluid at any given point
due to hydrodynamic wall effects (7, 23).] Nevertheless, these calculations
do support the contention of Berg et al. (2) that particle size effects were a
major contributor to the deviation between theory and experiment.

It is also possible to calculate comparable deviations for the nonspherical

TABLE 2
Effect of Sphere Size on Average Particle Velocity
Deviation
Radius, a Scale height, A e = afh Predicted Observed®
0.40 ym 29.8 um 0.013 1.01 0.99 4+ 0.04
0.65 um 6.76 um 0.096 1.10 1.16 4 0.03

@ Average of four separate trials.
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dimers and for linear trimers. Gajdos (16) [also see Giddings et al. (24)]
has shown that, in the regions where not all orientations of the body are
possible (e.g., for the dimer, a < y < 2aand h — 2a < y < h — a), the
two integrands of (108) should each contain a weighting factor pro-
portional to the total solid angle “accessible”” to the particle’s axis of
revolution. This factor decreases from a value of unity, when the particle
is first able to touch the wall, to a value of zero, when the particle is at
its minimum approach to the wall. (In this case, at either y =aor y =
h—a)

The limited results obtained here for finite particle size indicate that the
assumed scaling of distances with apparatus height in the section entitled
“Orientational Equilibrium” requires appropriate modification to include
the alternate length scale A,. It is rather obvious that the apparatus height
is of no consequence if the field strength is very large. Indeed, A may
be taken as infinity with very little error. A more appropriate scaling,
valid for all field strengths, would be, say, A, tanh #, which has limits of
h and h, as the field strength § approaches zero and infinity, respectively.
The derivation in the section entitled “Orientational Equilibrium” remains
the same, subject only to this modification.

APPENDIX A. RELAXATION TIMES

Since only the long-time moments of the particle position were cal-
culated in the section entitled “Particle Transport Moments,” it is of
interest to estimate the time it takes the system to relax to this long-time
solution—i.e., to “forget” about the particle’s initial location, y’. The
transients for the moment functions are each governed by the eigenvalues
associated with Eq. (48).

It is not difficult to derive these eigenvalues by the method of separation
of variables, bearing in mind the boundary conditions (49). Sturm-
Liouville theory (25) then states that the transient portion of the solution
will be governed by the eigenvalues 7, of the operator L, defined in Eq.
(50), and the associated homogeneous boundary conditions (49). In this
case the eigenvalues are

l/z, = (1/4 + nnhJh)D'[hS* n=12..) (A-1)

such that the corresponding transient components of the solution die out
at the rate exp (—#/t,). The longest lasting transient consequently decays
at a rate

/1 = (1/4 + nh/h)D' [k (A-2)
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corresponding to n = 1 in (A-1). These formal mathematical considera-
tions accord with Berg and Purcell’s (/) physical reasoning.

APPENDIX B. WEAK-FIELD LIMIT TRANSPORT
PARAMETERS

In the limit when the field vanishes (for example, with neutrally buoyant
particles), the relative field strength f becomes zero. Simultaneously, the
scale height A, becomes infinite. Aris’ method (20) may be employed to
calculate the particle transport moments. They are also derivable from
the equations in this paper.

The average particle velocity U becomes unity, which is evident from
either (58) or (75). This agrees with intuition. In the absence of any biasing
by an external field, the particle is free to sample all vertical positions
equally. It thus moves, on average, at the same velocity as the fluid.

To obtain lim k(f), § — 0, make the transformation to a new distance
variable w, normalized to the apparatus height rather than to the scale
height. That is, let

o =yh=2_/B (B-1)
Substitution into (78) then yields
1 o 1
k, = 2j e“”“’Av'[ Av' dw’ dw/ﬁj‘ e P dw (B-2)
4] 0 0

In the limit § — 0, the above can be shown to be of the indeterminate
form 0 + 0, as a consequence of

1 ]
J Av[ Av' do' do =0 (B-3)
0 0

Application of L’Hopital’s rule thereby yields the limiting value,

1 [}
k, = —2j a)Avj~ Av' do' dw ($—-0) (B-4)
0

0

Straightforward integrations subsequently produce the theoretical values
cited in Table 1.
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