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SEPARATION SCIENCE AND TECHNOLOGY, 13(3), pp. 215-240, 1978 

Field-Flow Fractionation: Extensions to Nonspherical 
Particles and Wall Effects 

LAWRENCE J. GAJDOS" and HOWARD BRENNERf 
DEPARTMENT OF CHEMICAL ENGINEERING 
CARNEGIE-MELLON UNIVERSITY 
PITTSBURGH, PENNSYLVANIA 15213 

Abstract 

A rigorous analysis of the phenomenon of field-flow fractionation (FFF) is 
presented for particles which are both nonspherical in shape and of sufficient 
size (compared with apparatus dimensions) to be significantly influenced by wall 
effects. Calculations are presented for axially-symmetric particles in an arbitrary 
flow field. Orienting torques directed along the symmetry axis of the particle 
are also considered. The theory is compared with the experimental data of 
Berg, Purcell, and Stewart. Reasonably satisfactory agreement is observed. 

INTRODUCTION 

This contribution is concerned with the combined diffusive and con- 
vective transport of an isolated, arbitrarily shaped Brownian particle 
immersed in a fluid flowing horizontally above a flat plate. It applies equally 
well to dilute systems of noninteracting particles. In the presence of con- 
servative external forces and torques normal to the flow direction (such 
as arise from gravity), which simultaneously influence the particle's posi- 
tion and orientation, the average convective transport of the particle is 
governed by its buoyant mass. In turn, this determines the average particle 

*Formerly Gaydos. Currently with Carnegie-Mellon Institute of Research. 
?Current address: Department of Chemical Engineering, University of Rochester, 

Rochester, New York 14627. 
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216 GAJDOS AND BRENNER 

position in the potential field. This phenomenon can be used to effect a 
separation between particles of different size, shape, or density. This 
separation concept was developed independently by Berg and Purcell 
(1-3) and by Giddings (4-6), who termed the method “field-flow frac- 
tionation.” Here, the theoretical analysis is improved upon and extended 
to include nonspherical particles in an orienting field. 

Our approach, which considers the temporal evolution of the pro- 
bability density describing both the position and orientation of a single 
particle, has previously (7) been applied to analyze transport of Brownian 
spheres in fluid-filled circular cylinders. However, in that situation, 
particle transport is affected by the size of the particle (due to “exclusion 
effects” and hydrodynamic interactions with the system boundaries). 
Here, size is primarily of importance only insofar as it determines the 
particle’s buoyant mass. This greatly simplifies the hydrodynamic analysis 
of the particle’s behavior. 

Berg and Purcell ( I )  employed an ingenious random-walk analysis to 
(in effect) obtain the approximate time-evolution of the moments of the 
particle distribution. Giddings (5 )  used somewhat different, but still heuris- 
tic, concepts in his theoretical analysis (“nonequilibrium theory”), as is 
pointed out by Subramian (8), who shows how the Gill and Subramian 
dispersion theory (9) is more suitable for theoretical treatment of these 
problems. 

The analysis to be given here extends the range of problems for which 
theoretical analysis of field-flow fractionation may be contemplated. Con- 
siderations are given to the finite size of the particle in terms of the con- 
sequences of the regions close to the system boundaries being inaccessible 
to the particle. Also, by beginning with the six-space continuity equation, 
it is possible to extend the applicability to nonspherical particles. 11- 
lustrative examples are carried out for special subcases of the general 
theory to indicate how it can be applied. 

A more detailed summary of the developments to be presented now 
follows. 

We begin by presenting the continuity equation governing the particle’s 
six-space probability density. Boundary conditions are incorporated into 
the continuity equation via a synthetic wall potential, which expresses the 
fact that the particle surface is unable to penetrate physical barriers. The 
particle is assumed to be introduced into the flowing fluid at  zero time at 
an arbitrary location and with an arbitrary orientation. 

Particle size is assumed relatively small compared with the physical 
dimensions of the apparatus. For times longer than the characteristic 
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FIELD-FLOW FRACTIONATION 217 

“diffusion time” of the particle, it is then shown that the particle loses all 
memory of its initial orientation. Consequently, a condition of “orienta- 
tional equilibrium” obtains instantaneously at each point, wherein the 
particle’s rotary Brownian motion is equilibrated with the orienting effects 
of the external couple. As a consequence, i t  becomes possible to average 
the continuity equation over all orientations of the particle, leading to a 
closed-form expression for the time-evolution of the marginal prob- 
ability density of particle-locator position in physical space only. The 
expression is identical to that describing convective diffusion phenomena 
in an anisotropic medium. 

For illustrative purposes, the physical problem is then specialized. The 
particle is assumed to be a body of revolution, possessing both fore/aft 
symmetry and an axisymmetric (but possibly inhomogeneous) distribution 
of mass. The general theory, however, is not restricted to these assump- 
tions. Further, the external force is assumed to arise from a constant 
acceleration potential, such that any external torque due to the particle’s 
mass inhomogeneity is constant too. Again, these restrictions lend con- 
creteness but are not essential to the development of the theory. The 
continuity equation is then simplified to a form specific to these assump- 
tions. 

Analysis of the problem is continued by deriving relationships for the 
asymptotic, first, and second axial moments of particle position in the 
direction of flow. For these long times, the particle loses all memory of 
its initial position in the plane perpendicular to  the flow. It is shown that 
a “positional equilibrium” develops wherein translational diffusion is 
balanced by the deterministic influences of the external field. The moments 
are given in terms of the physical parameters of the problem as well-defined 
integrals of the local undisturbed fluid velocity profile. These integrals 
are weighted by an appropriate factor dependent on the strength of the 
external field. 

The transport moment integrals are then evaluated for an arbitrary, 
power-series velocity profile. The integrals are reduced to finite sums 
involving the incomplete gamma function. Numerical results are given for 
two of the more common velocity profiles, namely flow between two 
parallel flat plates (full parabola) and flow with an upper free surface 
(half parabola). These results are parameterized by a dimensionless 
grouping proportional to the strength of the external field. 

Following this, the results for an appropriate limiting case are shown 
to be comparable to those of Berg and Purcell ( I ) .  Our computations are 
more accurate at  extreme values of the field strength grouping. We then 
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218 GAJDOS AND BRENNER 

show how our results may be applied to nonspherical particles, taking 
the dimers observed by Berg and Purcell as a prototype shape. Next, the 
results are extended to incorporate first-order effects of particle size (for 
spheres only) on the rate of particle transport. The modification appears 
able to account for most of the observed deviation between theory and 
experiment. Lastly, we indicate how the appropriate corrections can be 
calculated for nonspherical particles. 

PROBLEM DESCRl P T l O  N 

Consider a single Brownian particle inserted into an otherwise unidirec- 
tional horizontal fluid motion taking place in the z direction. The fluid 
extends to infinity in all horizontal directions being bounded vertically, 
below and above, by planes y = 0 and y = h, respectively. With 2 a unit 
vector in the direction of flow, the undisturbed fluid velocity field is as- 
sumed to be of the form 

v, = i V f ( Y >  (1) 

v-v, = 0 (2) 

This automatically satisfies the continuity equation 

for any choice of V,(y). 
In addition to the hydrodynamic surface force exerted on the particle 

by this fluid motion, an external body force is assumed to act upon the 
particle in the vertical direction. This force may also give rise to a torque 
on the particle, tending to align the latter in a particular orientation with 
respect to the direction of the external force field. This would occur, for 
example, if the particle’s mass were inhomogeneously distributed. 

As a result of the diffusive, random Brownian forces superimposed on 
the above, the net motion of the particle is a stochastic process whose 
statistical properties may be described by the temporal evolution of the 
probability density function describing the particle’s instantaneous 
position. 

The “position” of an arbitrarily shaped, rigid particle of finite size is 
described by six coordinates, three to fix the location of the particle in 
space and three to describe its orientation. In this paper, the configuration- 
space representation of Brenner and Condiff (10) shall be used. Particle 
location is given by the vector R from a point fixed in space to an arbitrary 
“locator point” rigidly attached to (but not necessarily lying within) the 
particle. R will be given the Cartesian coordinates (x, y ,  z )  delimiting the 
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FIELD-FLOW FRACTIONATION 219 

apparatus. Particle orientation is specified by the set of Euler angles (10, 
11) + which relate the orientation of axes fixed in the particle (body-fixod 
axes) to a set of axes fixed in space. 

The particle’s position (R,  4) is a stochastic process with given initial con- 
dition (R’, +’) at time t = 0. As is discussed later, for sufficiently long timos 
the statistics of this process become independent of this initial condition- 
whence the particle loses all “memory” of its initial state. The probability 
density function describing this motion will be denoted by u= 
a(R, 4, t I R’, 9’). That is, od3Rd34 is the probability that the particle’s 
position at time t lies in the six-space volume element d3Rd34 centered at 
(R, 4). By definition, the integral of this function over the entire domain 
must be unity:* 

ud3Rd34 = 1 (for all t )  SJ (3) 

Conservation and continuity of probability density require that u 
satisfy the continuity equation (7, 10, 12-15) 

au a a 
a t  aR 84 
- + - * ‘J + - ‘J = 6(t)h(R - R’)6(+ - 4’) (for t 2 0) (4) 

(T = 0 (for t < 0) ( 5 )  

In the above, 6 is the Dirac delta function, defined for vector arguments 
such that i t  is normalized when integrated over the appropriate vector 
space : 

6(R - R’)d3R = 1 s 
J6(+ - ( b y 3 4  = 1 (7) 

d/dR and 8/34 represent gradient operators in physical and orientation 
space, respectively, while the quantities ‘J and ‘J, respectively, are the 
vector fluxes of probability due to translation and rotation of the particle. 
These quantities, which contain contributions arising from all three 
sources of particle motion (fluid convection, external forces and torques, 
and Brownian motion) can be related to the density function u (10). 

The motion of the particle is constrained such that every point in the 

*The notation J. . . indicates integration over the entire domain of either physical 
space, R, or orientation space,@. 
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220 GAJDOS AND BRENNER 

particle necessarily lies between y = 0 and y = h at all times. Taking ac- 
count of the finite size of the nonspherical particle is mathematically 
nontrivial as regards the impenetrability of the wall to the particle. In 
general, for a given set of locations R, only certain orientations Q of the 
particle will meet this restriction. The description of the boundary con- 
dition will also depend on the particular choice made for the locator 
point.* Gajdos (16) discusses a technique for incorporating this boundary 
condition directly into the contiruity equation, by recognizing that 
penetration of the boundaries by the particle is prevented by very short- 
range, intermolecular, repulsive forces. These forces may be most simply 
modeled by assuming that they give rise to a potential which is everywhere 
zero, except when particle-boundary penetration occurs, in which event 
the potential assumes a value of infinity. Such a potential could still be a 
complicated switching-type function of location and orientation. Never- 
theless, it eliminates and/or postpones many conceptual problems as- 
sociated with the boundary condition. 

When size effects are irrelevant, as will be true here, the wall potential 
“switching function” takes an especially simple form, independent of 
orientation. if we specify that the particle-locator point be “somewhere 
near” the particle-for example, within it or not too far from some point 
on its surface-we may take as the wall potential E,, a function which is 
infinite whenever the vertical y coordinate of the particle’s location vector 
R lies outside the vertical boundaries of the system: 

0, O < y < h  

co, y 5 O ; y L h  
E w  = { 

This ignores any considerations of the finite size of the particle. Simply 
stated, the difference between the true cutoff values, which vary with par- 
ticle orientation, and those used above (0 and h) is much smaller than the 
distance scale of interest. Hence, to a certain order of approximation 
(consistent with other assumptions to be invoked), Eq. (8) allows a valid 
representation of the boundary condition. 

Thus, if the other forces and torques on the particle can also be expressed 

*For example, if the particle is a sphere, any choice of locator point other than the 
sphere center implies that the boundary condition must involve a complicated inter- 
connection between location and orientation. For other particle shapes, no locator 
point proves to eliminate this interdependence-although some choices may prove 
better than others. 
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FIELD-FLOW FRACTIONATION 221 

as a potential, the net force F and torque T on the particle are given by 

F/kT = -aE/aR (9) 

T/kT = -dE/d$ (10) 

with k the Boltzmann constant and T the absolute temperature. This 
definition of the net potential* E, which incorporates the mean thermal 
particle energy kT, renders i t  dimensionless. The potential arises from 
both the physical origins previously discussed as well as from the synthetic 
considerations of the boundary condition. 

Equations (4) and (5) describe the evolution of the probability den- 
sity function of the stochastic process (R, +) from its initial value 
o(R, +, 0 I R’, Cp’) = 6(R - R‘)6(+ - Cp’). This evolution is governed by 
the convective velocity field, Eq. (l), the potential field E, Eqs. (9) and (lo), 
and the random Brownian motion of the particle. These influences are 
linked into Eq. (4) via the vector probability fluxes ‘J and ‘J according to 
known constitutive relationships (ZO). 

ORlENTATlO NAL EQ Ul Ll BRI U M 

The assumption of orientational equilibrium constitutes a major 
simplification of the problem. Here, the particle orientation is determined 
solely by a balance between the deterministic, orienting effects of the 
external field and the stochastic effects of rotary Brownian movement. 
The orienting effect of fluid shear is assumed to be negligible. 

Brenner and Condiff (10) have derived criteria prescribing conditions 
for the validity of this assumption. First, times must be longer than the 
diffusion time, zD, characteristic of the particle. In such circumstances 
the particle will have lost all memory of its initial orientation. Second, the 
particle must be small compared with apparatus size. With a a charac- 

*If the wall potential is a true step function, care must be taken in applying Eqs. (8) 
and (9). Physically, of course, the potential becomes infinite over a finite distance, 
rather than abruptly; it is only because of the scale of distance that will be treated 
that we make the step function approximation. For example, the potential only resem- 
bles a step function due to the scaling that will ultimately be of concern to us. 

?For a spherical particle of radius a immersed in a fluid of viscosity p ,  51, E 8npa3/ 
kT = l/D,, where D, is the rotary diffusion coefficient. In the two systems studied 
by Berg and Purcell, rD = 0.6 sec and T~ = 0.8 x sec in the studies dealing with 
-1 pm latex spheres (2) and E. coli bacteriophage (3), respectively. Since the total times 
for their experiments ran into hours, the condition t >> T~ is certainly true in their work. 
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222 GAJDOS AND BRENNER 

teristic particle size, this condition may be stated as 
dcf 

I = a/h 

where 

I << 1 (1 2) 

By suitably scaling Eq. (4) and by expanding CT in a perturbation series 
in the parameter A, Brenner and Condiff (10) have determined that 
orientational equilibrium represents a zeroth order (in 1) solution of the 
continuity equation. That is, they found that 

(T = +e-“ + o(1) (for t >> tD) (13) 

where + = +(R, t 1 R’) is an arbitrary function, independent of orientation. 
The utility of expressing the “no penetration” boundary condition as 
part of the potential is immediately apparent from Eq. (13). Equation (3) 
guarantees that $(R, t I R’) be finite for all times greater than zero. Thus, 
Eq. ( 1  3), the mathematical statement of orientation equilibrium, implies 
that CT be zero whenever Eis  infinite. Thus the boundary condition has most 
simply been incorporated into the partial solution of Eq. (4). 

Substitution of Eq. (1 3) into the continuity Eq. (4), and integration over 
all orientations, yields 

where the integrated potential is defined by 

J is the orientation-averaged translational flux vector, 

J = ‘Jd34 def s 
The orientation-averaged divergence of the rotary flux is identically zero, 
as a consequence (5 )  of + being a closed space and of the single-valuedness 
of ‘J: 
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FIELD-FLOW FRACTIONATION 223 

The constitutive relation for the translational flux vector is (10) 

Here,* ‘D and ‘D are, respectively, the translational and coupling dif- 
fusion dyadics, and V is the purely hydrodynamic convective velocity of 
the particle locator point in the absence of Brownian movement and 
external forces. In general, each are functions of particle and boundary 
sizes and shapes, fluid properties, and of particle location and orientation 
relative to the boundaries. However, to zeroth order (in A), these diffusivity 
dyadics are “almost everywhere”** those which obtain in the absence of 
boundaries. Moreover, the translational convective velocity is identical 
to the value of the undisturbed fluid velocity at the locator point, 

v = v, + O(A) (19) 
In applying Eqs. (13) and (18) to Eq. (16) for the orientation-averaged 

translational flux, explicit recognition must be given to the fact that the 
last term of Eq. (18), involving the coupling dyadic, is of higher order than 
the other terms. Thus, although Eq. (13) seems to imply the vanishing of 
this term when proper scaling is applied, the order 1 term in the perturba- 
tion expansion (13) for 0 must be included (for this last term only). Thus, 
omitting details (lo), 

wherein the inverse of the translational resistance dyadic, *K, appears, 
rather than the translational diffusion dyadic, ‘D, related by the generalized 
Stokes-Einstein relation, 

(kT/p)fK-l = *D - cDt.rD-1.CD (21) 

with ‘D the rotatary diffusion dyadic. In the absence of boundaries, the 
coupling dyadic is identically zero for centrally-symmetric particles when 

*Note that “t” indicates transposition, e.g., (ab)t = ba. 
**Gajdos (16) has treated the mathematical formalities of this assertion. It is always 

true that a region exists near the boundary-say, within 10 particle lengths of the 
boundary-where hydrodynamic interaction occurs between the particle and the 
boundary. However, for very small particles (in Berg and Purcell’s experiments, 1 r= 
O.OOOl), this region is such a small portion of the total domain of the particles that 
phenomena occurring in the boundary region can be neglected. 
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224 GAJDOS AND BRENNER 

the locator point lies at the body’s “center of reaction” (14). Under these 
conditions, which obtain in the following, the distinction is of no con- 
sequence. 

Equations (14) and (20) show that the vertical domain, y, of R is limited 
by the wall potential defined in Eq. (8). Outside of the region 0 I y I h, 
the coefficients of each term in Eqs. (14) and (20) vanish. With this in mind, 
define the marginal probability density, c = c(R, t I R f ) ,  

c = (rd34 = +eWE + O(A) ( t  >> rD)  (22) s 
The latter equality follows from Eqs. (13) and (15). Since c is a probability 
density, 

cd3R = 1 (for all t )  (23) s 
which also follows independently from Eq. (3). Thus, utilizing Eqs. (20), 
(22), and (2), the orientation-averaged continuity Eq. (14) becomes, for 
t >> TD, 

ac - + V/.VC - V.e-EB.VceE = J(~)J(R - R’) + o(n) 
at 

(0 I y I h) 

c = 0 ( y  < 0 ; y  > h) 
The average diffusivity b has been defined as 

def 

b = (kT/p) (X--I )  

Moreover, V has replaced the physical space gradient operator, 
def 

v = alaR 
The orientation-averaging operator is given by 

Note that Eq. (25) follows from Eqs. (8), (15), and (22).* 
Equations (24) and (25) represent the final result of carrying through, 

*In addition to (25), observe from (26) and (28) that the product e-ag must vanish 
at y = 0 and y = h, whereas the product e% is everywhere equal to ty (Eq. 22). This 
consideration implies that the flux e-EbVceE must also vanish at y = 0 and y = h. 
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FIELD-FLOW FRACTIONATION 225 

to zeroth order in I ,  the consequences of orientational equilibrium. The 
residue is a conventional physical-space convective-diffusion equation. 
Under the dual assumptions of t >> zD and il + 0, this equation applies 
to particles of arbitrary shape in the presence of orienting external fields. 

SPECIALIZATION OF PROBLEM 

The preceding results will now be specialized to  axisymmetric, centrally- 
symmetric particles. Further, the external field will be assumed to arise 
solely from a gravitational force acting downward on the particle. The 
latter is allowed to possess a nonuniform, but axisymmetric, mass dis- 
tribution, such that if the centers of mass and of buoyancy are distinct, 
they both lie along the axis of symmetry. Failure of these centers to 
coincide results in the existence of a permanent, embedded dipole- 
creating a gravitational torque tending to align the particle’s symmetry 
axis in the vertical direction, with the heavier end of the particle pointing 
vertically downward. 

Brenner and Condiff (10) have derived the general form of the potential 
resulting from such circumstances. Their result may be expressed as 

In the above 
def 

h, = kT/m,g 

is the “scale height” ( I ) ,  and 
def 

x = mpgrnlbIkT 

the Langevin parameter, with mb and mp, respectively, the buoyant and 
actual particle masses, g the acceleration of gravity, and rmb the distance 
between the centers of mass and buoyancy. The assumed geometric sym- 
metry of the particle is such that (17) 

‘D = 0 (32) 

‘D = ee‘DII + (U - ee)‘D, (33) 
with the locator point chosen to lie at its centroid, which is also its center 
of reaction. The unit vector e along the particle’s symmetry axis is a 
function of orientation, i.e., e = e(+). U is the idemfactor, while ‘Dll 
and ‘DL are intrinsic scalars depending only on the size and shape of the 
particle, representing, respectively, the translational particle diffusivities 
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226 GAJDOS AND BRENNER 

in directions parallel and perpendicular to the symmetry axis. Equations 
(32), (33), (21), and (26) thus give 

(34) b = U‘D, + (ee)(‘DI, - ‘D,) 
Given the potential (29), the orientation average (27) of the dyad ee is 

(10) 

(ee) = jj + (U - 3pj )x- ’~(x)  (35) 
with L(x) the Langevin function 

b = (U - j 9 ) D  + 990’ (37) 
where the scalars D and D’ are defined by 

D = ‘D, + x-’L(x)(YIII - ‘Dl) 
D = ‘Dll - ~ X - ~ L ( ~ ) ( ‘ D I I  - ‘D,) 

(38) 

(39) 
Introduction of (29) and (37) into the orientation-averaged continuity 

Eq. (24) yields 

= 6 ( t ) 6 ( . ~  - x ’ ) S ( ~  - Y ’ ) ~ ( z  - z’) + O(A) (40) 
The comments in the footnote on page 224 lead to the boundary conditions 

a(ceY/hn)/ay = 0, at y = 0, h (41) 

Two further simplifications are now easily made. The form of (40) 
shows the initial z-coordinate of the particle to be inconsequential, whence 
z’ may be arbitrarily chosen. The obvious choice is 

z’ = 0 (42) 

In addition, no interest attaches to particle transport in the x-direction, 
across the width of the apparatus. This leads to the introduction of 
marginal density, f ,  of c,  defined by 

Hence integration of (40) and (41) over the range - 03 < x < 00 gives, 
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FIELD-FLOW FRACTIONATION 227 

with the use of (42), 

since the probability flux, dqax, must vanish at  x = 03. 

PARTICLE TRANSPORT MOMENTS 

Our main concern is with particle transport in the z direction. Moment 
techniques of the Taylor, Aris, and Gill and Subramian genre (9,18-20) 
can therefore be applied to extract the macroscopic manifestations of 
such transport without necessity for a complete solution of the pertinent 
differential equation governing the probability density. Specifically, 
knowledge of the time variation of the first and second axial moments (of 
the horizontal position z of the particle) will prove sufficient. 

To this end, define the moment generation functions, p,,(y, t I y’): 

pn Z J:- z”fdz (for n 2 01 (46) 

In terms of these, the desired moments are given by 
h - 

112, = rn”(t) = Z” = J pn dy (n 2 0) (47) 
0 

The differential equations and boundary conditions governing the p,, 
can be obtained by multiplying (44) and (45) by z”, and integrating over 
the domain of z, to obtain 

(48) 

a(pneY/hs)/ay = 0, at y = 0, h (for all n) (49) 

and 

where the operator L is defined by 
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228 GAlDOS AND SRENNER 

Integration of (48) over the domain of y ,  and application of (49), yields, 
according to (47), 

s( t )  (n = 0) 

0 (n > 0) 
(51) 

dmll - = nVfpn-, + n(n - l)Dm,-, + dt 

The overbar denotes integration over the entire domain of y :  

Equations (51) and (48) offer a recursive procedure for obtaining mo- 
ments of any order. In the applications to follow, only the moments of 
orders n = 0, 1, and 2 are required. 

With n = 0, Eq. (51) yields 

mo = 1 (53) 

This is merely a restatement of (3). The form of mo suggests that po pos- 
sesses an asymptotic solution of the form 

p o  = ae-y/hs + exp (54) 

where “exp” denotes terms that are exponentially small for large times t. 
Appendix A quantifies the criterion for “long times.” It is readily verified 
that Eq. (54) satisfies (48) and (49) for an arbitrary constant a. The value 
of a is determined by noting that ji, = m, (see Eqs. 47 and 52), so that 

- 
exP (55) p o  = e-y/hs/e-y/hs + 

With n = 1, Eq. (51) leads to 

Hence, employing ( 5 9 ,  and neglecting exponentially small terms, yields 

m, = p, = Ut 

- u = Vfe-Y/hs/e-y/hs 

pl = (e-y/hm/e-y/ha)(Dt + b) + exp 

(57) 

(58)  

(59) 

e-ylhab(y) = 0 (60) 

where 
def - - 

The form of (57) suggests a trial solution for pL1 of the form 
- 

The latter is consistent with (57) for b any function of y, satisfying 
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FIELD-FLOW FRACTIONATION 229 

Substitution of (59) and (55) into (48) provides the necessary differential 
equation satisfied by b : 

Furthermore, from (49), 

db 
- = O ,  at y = O , h  
dY 

A first integral of (61) is 

It is unnecessary to obtain b itself in order to calculate the moments. 
Rather, the above equations suffice. 

Continuing to the last step of the procedure, Eq. (51) requires that the 
second moment be given by the solution of the equation, 

dmz - - = 2Vfp1 + 2 0  dt 
By using Eq. (59), the term involving p, can be written as 

- - 
V,pl = tf2t + I/e-YIh" (65) 

with I defined as 
h 

I = J b(y)vfe-y/h*dy (66) 
0 

The following manipulations obviate the need for an explicit expression 
for b(y) for use in (66). Multiply (61) by b(y) and integrate from y = 0 to 
y = h. Next, integrate the resulting left-hand side by parts and use (62). 
Also recognize that the first term on the right-hand side integrates to zero 
because of (60). The remaining terms can then be rearranged to give an 
expression for I that is easier to evaluate, namely. 

This result substantiates the claim that b(y) itself need not be obtained. 
Equation (67) can be simplified greatly. First, substitute in (63) and 

integrate the result by parts. One obtains, using the definition (58) of 0, 
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230 GAlDOS AND BRENNER 

where V ;  = V,(y’). Lastly, as a result of (62) and (63), it is easy to show* 
that an equivalent expression is 

Hence, integration of (64) gives 

m, = (ut12 + 2 t ( ~  + 1 / 3 1  (70) 

Consequently, the standard deviation, or second central moment, is 

( z  - 2)2 = in2 - m4 

Equations (57) and (71), which constitute the desired relationships, 
express the average rate of travel of the particle through the system and the 
deviation about this rate. Given the physical constants for the system 
(h, x, h,, ‘DI, ‘D,,), and a specific velocity profile V,(y), one can calculate 
Z and ( z  - 2)2 using (57) and (71) in conjunction with the defining rela- 
tionships (38), (39), (36), and (58) .  

The principal results may be cast in dimensionless form. To this end, 
define 

5 = ylh, (72) 

P = h/h, (73) 

The upper limit on 5, corresponding to h, is then given by 

or 
j z m,gh/kT (74) 

such that 11 can be thought of as the “relative field strength” characterizing 
the experiment. 

In these terms, the average particle velocity 0, defined by Eq. (58) ,  can 
be written as 

*Equations (62) and (63) show that the inner integral of (68) is zero when its upper 
limit, y ,  is equal to h. Hence, after reversing the sign of the expression, the inner integral 
may also be expressed as the integral from y’ = y toy’ = h. Equation (69) then follows 
by reversing the order of the two integrations and switching dummy indices, y and y’. 
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FIELD-FLOW FRACTIONATION 23 I 

Morevoer, in place of (71), the “spread” of particle positions may be 
written as 

( 2  - Z)2 = 2 [ 0  + k”(h2V;p) l t  (76) 

where V,,, is the mean fluid velocity, 
Ph 

The dispersion parameter, 

is a dimensionless function of both the relative field strength p and the fluid 
velocity profile. Here, 

AU = (U - Vf)/V,,, (79) 

is the normalized velocity deviation function. 

EVALUATION OF THE TRANSPORT MOMENTS FOR 
A N  ARBITRARY POWER-SERIES VELOCITY PROFILE 

It is especially easy to evaluate the transport moment integrals, (75) 
and (78), when the fluid velocity is expressed as a power series in the vertical 
distance variable 5 .  Thus, let V, be given by 

N 

For example, the parabolic profile for pressure-driven flow between two 
flat plates is given by 

vf = 6vrn(Y/W - Y / 4  (81) 

so that, corresponding to (80), N = 2,  a, = 0, a ,  = 6/8, and u2 = -6 / j2 .  
Substitution of (80) into (75) yields 

N 
o = v r n c  anr(n + 1, B ) / Y ( ~ ,  PI (82) 

n = O  

where y(n + I ,  p) is the incomplete gamma function (21), 
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232 GAJDOS AND BRENNER 

such that 

y ( l , P )  = 1 - e-p (84) 

From Eqs. (82) and (79), the velocity deviation function is thus 

with coefficients 

Substitution of (85) into expression (78) for the dispersion parameter k ,  
permits the double integration to be performed readily, due to (83). After 
collecting like terms, there results 

with constants A, defined by 

Computations were performed with a digital computer to obtain values 
of o / V m  and k,  over a wide range of field strengths. Two velocity profiles 
were used: the parabolic field of Eq. (81), and the half parabola resulting 
when the upper plate is replaced by a free surface, namely 

vf 3 v m [ ( ~ / h )  - 1/2(~/h)~I (90) 

The results of these calculations appear in Table 1. Note that the weak 
field limit results (P = 0) required further development, as discussed in 
Appendix B. 

Table 1 also lists the parameters j / h  and fl2, the average particle height 
and the Berg-Purcell ( I )  "width-factor," respectively. The latter parameter 
is related to the transport parameters utilized herein by the expression 

The average particle height parameter may be derived as follows. By 
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TABLE 1 
Variation of Transport Parameters with Relative Field Strength 

Full parabola (81) Half-parabola (90) 

B j l h  iilv,,, k v - I  ~ 7 2 ~  i7l vn, k"-' J72b 

0.0" 
0.1 
0.2 
0.5 
1 .o 
2.0 
2.5 

4.0 
5.0 
63 

10.0 
20.0 

3; 

0.5 1 .o 210 0.138.. . 1.0 52.5 0.276. . . 
0.492 - - - 0.988 51.9 0.286 
0.484 0.999 209 0.143 0.975 51.6 0.295 
0.459 0.996 204 0.153 0.937 50.9 0.326 
0.418 0.984 190 0.176 0.873 51.4 0.382 
0.344 0.939 159 0.246 0.750 58.4 0.508 
0.311 0.909 149 0.290 0.693 65.2 0.575 
0.263 0.853 143 0.373 0.608 82.7 0.688 
0.231 0.806 146 0.444 - - - 
0.193 0.736 163 0.550 0.474 151 0.889 
0.149 0.632 223 0.712 - - - 
0.100 0.480 495 0.936 0.270 984 1.182 
0.050 0.270 3901 1.186 0.142 11,670 1.304 

a See Appendix B for derivation of weak field limits. These results (at B = 0) are exact. 
Assuming D = D' (the case for spheres, or when there is no external torque, such 
that the Langevin parameter, ,y = 0). If this is not the case, the quantity tabulated 
is actually ( J 2 ) d T D .  

definition, from the marginal density of Eq. (43), we have* 

h 

J = j:m jo Y f ( Y ,  2, t IY') 4 dz (92) 

This may be expressed alternatively in terms of the moment generating 
function po(y, t 1 y'), defined by Eq. (46): 

Thus, from (55 )  and the definition (52) of the overbar operator, 

*Note that the symbol f is employed for both the width-factor and the marginal 
density. No confusion should result, however, since the former always appears in the 
form fi2. 
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234 GAJDOS AND BRENNER 

or, neglecting transients, and utilizing (72) and (73), 

Equivalently, in terms of the incomplete gamma function, 

For both cases tabulated in Table 1, the dispersion parameter k ,  exhibits 
a maximum at some intermediate value of the field strength. This effect 
is most pronounced in the case of the full parabolic velocity profile. 
Presumably, this behavior may be interpreted by realizing that the dis- 
persion will not decrease until it is less probable that the particle is in the 
general vicinity of the maximum fluid velocity. Thus, if the fluid velocity 
is a maximum at the upper boundary (the half-parabola case), the dis- 
persion increases at relatively low field strengths, whereas in the full- 
parabola case the average particle height must move below the center 
(h /2)  of the apparatus. 

DISCUSSION 

The results derived here are directly comparable to the theoretical results 
of Berg and Purcell (1). They are in substantial agreement-differing 
slightly only in the values of the width-factor (91) at high and low field 
strengths. Numerical values derived here are believed to be the more 
accurate of the two. Berg and Purcell’s computational procedure, although 
ingenious, was based on a random-walk analysis using a finite grid spacing. 
To obtain the width-factor, it was necessary for them to truncate a com- 
plicated infinite summation of transition probabilities, dependent on these 
grid points. Based on their qualitative discussion of this procedure, it does 
not seem unreasonable to assume that their results are only accurate to, 
say, 50/,. This conclusion is further supported by the failure of their cal- 
culated width-factors (for the full and half parabolas) to approach the 
weak field limit (Appendix B). In this limit, Table 1 indicates that the 
width-factor for the half-parabola should become exactly twice that for 
the full-parabola. Berg and Purcell’s results do not quite meet this cri- 
terion, although their error is small. 

In the middle range of field strengths, agreement between the width- 
factors calculated here and those obtained by Berg and Purcell is excellent. 
However, at high field strengths, the two methods once again give slightly 
different results, Berg and Purcell’s being lower by about 5 %. 
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FIELD-FLOW FRACTIONATION 235 

In their experiments with latex spheres, Berg et al. (2) discovered that 
a significant portion of the spheres had stuck together, forming “dimers” 
and “trimers.” The theory presented here is capable of describing the 
transport of any body of revolution possessing fore-aft symmetry. Thus 
it can be applied to a dimer and also to a trimer, if the latter is configured 
as a straight chain. 

Our theory shows that, for small particles, the transport rate is in- 
dependent of shape. However, the spread (76) about this mean rate is 
seen to depend on the two orientation-averaged diffusivities, D and D‘. 
These scalars, representing the orientation-averaged diffusivities in the 
direction of the flow and the direction of the field, respectively, are 
determined from the body’s intrinsic diffusivities, ‘DI and ‘DII, as functions 
of the Langevin parameter x, via Eqs. (31, (38), (39), and (36). This 
parameter measures the strength of the dipole interaction with the ac- 
celeration field. For example, if the dipole interaction is zero, then (10) 

x-lL(x) = 1/3 (x = 0) (97) 

D = D’ = (1/3)‘D,l + (2/3)‘D, (1/3)U: ‘D (98) 

so that 

that is, the orientation-averaged diffusivity is isotropic in the absence of 
an external couple, the scalar diffusivity being equal to the arithmetic 
average of the translational diffusivities along the principal axes of the 
particle. These scalars can be obtained from the translational resistance 
of the particle via the Stokes-Einstein relationship (21). Hence, with use 
of (32) and (33), there obtains 

The translational resistance scalars, for motion parallel to and perendicular 
to the axis of revolution, have been denoted ‘Kll, ‘KL,  respectively. 

Goldman et al. (22) show, for two touching, nonrotating spheres, each 
of radius a, that the resistance coefficient of each sphere is reduced from 
its Stokes law value of 6na by a factor of either 0.645 or 0.725 according 
as the spheres are moving parallel or perpendicular, respectively, to their 
line of centers. The translational resistances of the two-sphere particle are 
thus given by 

‘KII = 1.29(6xa) (101) 

‘K, = 1.45(6xa) ( 102) 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
4
:
0
7
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



236 GAJDOS AND BRENNER 

Hence, from (99) and (100), 

‘Dl1 = 0.7750, (103) 

*D, = 0.6900* ( 104) 

D ,  = kTI6npa ( 105) 

where 

is the diffusivity of the single sphere. 
Finally, via Eq. (98), the orientation-averaged diffusivities become 

D = D’ = 0.7180, 

in the absence of an external couple. Had the diffusivity been calculated 
on the basis of a single sphere possessing the same volume as the dimer, 
the result would have been 

( 106) 

D = D’ = 0.7940, 

Equation (106) enables the spread in transport times to be calculated for 
the dimers via (76). Given the appropriate resistance coefficients, ‘K,,  
and ‘KI, for three colinear, touching spheres, analogous results could be 
obtained for the trimers. Unfortunately, the data of Berg et al. (2) are 
insufficient to confirm these shape-dependent results. 

Our last comment pertaining to the work of Berg et al. (2) concerns their 
speculations on the effect of finite particle size. They found that their 
experimental values of U were higher than the predicted values; further, 
the deviation increased monotonically with particle size. From our work 
(7) with finite-sized spheres in cylindrical tubes, it is seen that (to first 
order in particle size) the effect of size on average transport velocity is 
effectively to reduce the domain of y to that region truly occupied by the 
sphere center, namely, 

a s y s h - a  (107) 

This is so because the particle/fluid slip velocity is “almost everywhere” 
(see the last footnote on page 223) of a still smaller order, whereupon 
hydrodynamic considerations may be neglected. Thus, in place of ( 7 9 ,  we 
may write 

with 
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The power-series velocity profile (80) then gives, 
N 

However, for small values of there obtains, 

y(n+ 1, f i  - E )  = y(n + 1, P )  - e/?"e-B + O(E') 

y(n + 1, E )  = E"+l / (n  + 1) + O ( & n + 2 )  

(1 11)  

(1  12) 

The former derives from a Taylor series expansion of (83) about b, while 
the latter is derived by expanding the exponential in (83) and integrating 
the result term-by-term. 

A bit of algebra now yields the corrected expression for D in terms of 
its value calculated by assuming E = 0. In the case of the full-parabola (81), 

- 
Ucorr/Oe=O = I + E ctnh (p/2)  (1 13) 

If h >> h,, as is the case in the Berg et al. (2) experiments with latex spheres, 
this simplifies to 

ucorr/uE=O ,% 1 + E (p  >> 1) (1 14) 

Table 2 compares the predicted deviation with that observed by Berg 
et al. Results for the smaller size particles are clearly inconclusive. Within 
experimental error, no deviation exists. For the larger size particles, the 
present theory cannot account for all of the observed deviation. It is 
unlikely that higher order terms would improve this situation. For 
example, the next term in the formula ( I  14) is negative, and of order E'. 

[The sign will be negative since this term primarily accounts for the 
particle speed being slightly less than that of the fluid at  any given point 
due to hydrodynamic wall effects (7,23).] Nevertheless, these calculations 
do support the contention of Berg et al. (2) that particle size effects were a 
major contributor to  the deviation between theory and experiment. 

It is also possible to calculate comparable deviations for the nonspherical 

TABLE 2 
Effect of Sphere Size on Average Particle Velocity 

Deviation 

Radius, a Scale height, h, E = a/h, Predicted Observed" 

0.40 pm 29.8 pm 0.013 1.01 0.99 i~ 0.04 
0.65 pm 6.76 pm 0.096 1.10 1.16 f 0.03 

a Average of four separate trials. 
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238 GAJDOS AND BRENNER 

dimers and for linear trimers. Gajdos (16) [also see Giddings et al. (241 
has shown that, in the regions where not all orientations of the body are 
possible (e.g., for the dimer, a 5 y 5 2a and h - 2a 5 y 5 h - a), the 
two integrands of (108) should each contain a weighting factor pro- 
portional to the total solid angle “accessible” to the particle’s axis of 
revolution. Ths  factor decreases from a value of unity, when the particle 
is first able to  touch the wall, to a value of zero, when the particle is at 
its minimum approach to the wall. (In this case, at  either y = a or y = 
h - a.) 

The limited results obtained here for finite particle size indicate that the 
assumed scaling of distances with apparatus height in the section entitled 
“Orientational Equilibrium” requires appropriate modification to include 
the alternate length scale h,. It is rather obvious that the apparatus height 
is of no consequence if the field strength is very large. Indeed, h may 
be taken as infinity with very little error. A more appropriate scaling, 
valid for all field strengths, would be, say, h, tanh 8, which has limits of 
h and h, as the field strength p approaches zero and infinity, respectively. 
The derivation in the section entitled “Orientational Equilibrium” remains 
the same, subject only to this modification. 

APPENDIX A. RELAXATION TIMES 

Since only the long-time moments of the particle position were cal- 
culated in the section entitled “Particle Transport Moments,” it is of 
interest to estimate the time it takes the system to relax to this long-time 
solution-i.e., to “forget” about the particle’s initial location, y’. The 
transients for the moment functions are each governed by the eigenvalues 
associated with Eq. (48). 

It is not difficult to derive these eigenvalues by the method of separation 
of variables, bearing in mind the boundary conditions (49). Sturm- 
Liouville theory (25) then states that the transient portion of the solution 
will be governed by the eigenvalues z, of the operator L, defined in Eq. 
(50), and the associated homogeneous boundary conditions (49). In this 
case the eigenvalues are 

= (1/4 + nnh,/h)D‘/h,2 (n = 1, 2, . . .) (A-1) 

such that the corresponding transient components of the solution die out 
at the rate exp (- t/r,). The longest lasting transient consequently decays 
at a rate 

(A-2) I /T  = (1/4 + ~ h , / h ) D ’ / h , ~  
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corresponding to n = I in (A-1). These formal mathematical considera- 
tions accord with Berg and Purcell’s ( I )  physical reasoning. 

APPENDIX B. WEAK-FIELD LIMIT TRANSPORT 
PARAMETERS 

In  the limit when the field vanishes (for example, with neutrally buoyant 
particles), the relative field strength p becomes zero. Simultaneously, the 
scale height h, becomes infinite. Aris’ method (20) may be employed to 
calculate the particle transport moments. They are also derivable from 
the equations in this paper. 

The average particle velocity if becomes unity, which is evident from 
either (58) or (75). This agrees with intuition. In the absence of any biasing 
by an external field, the particle is free to sample all vertical positions 
equally. It thus moves, on average, at the same velocity as the fluid. 

To obtain lim k,(p), f i  -+ 0, make the transformation to a new distance 
variable o, normalized to the apparatus height rather than to the scale 
height. That is, let 

o = Y / h  = TIP (B-1) 
Substitution into (78) then yields 

In the limit fi + 0, the above can be shown to be of the indeterminate 
form 0 + 0, as a consequence of 

Ji Av 1; Av’ do’ dw = 0 

Application of L’Hopital’s rule thereby yields the limiting value, 
f l  f w  

k ,  = - 2  J o h  J A d  do‘ dw (p-0) (B-4) 
0 

Straightforward integrations subsequently produce the theoretical values 
cited in Table 1. 
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